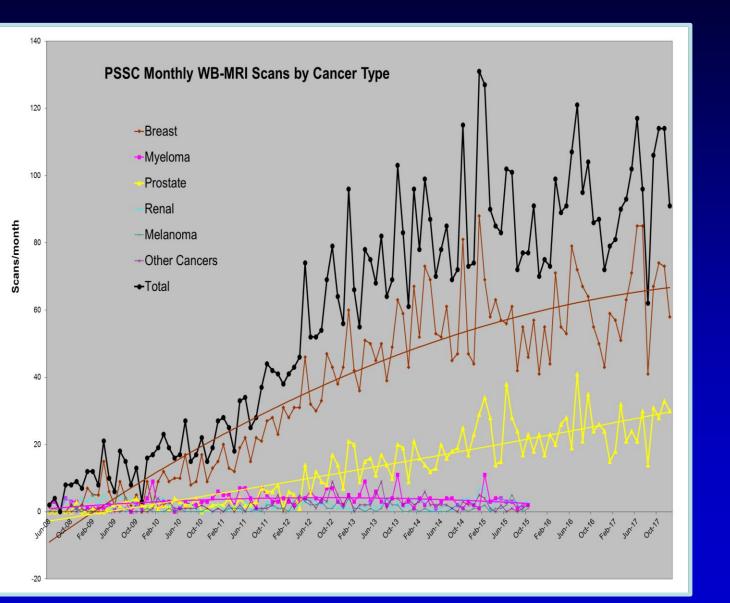
Whole-Body MRI in Healthcare Screening

Dr Andrew Gogbashian


Consultant Radiologist, Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, London

Email: a.gogbashian@nhs.net

LFS UK 2018, London

WBMRI at PSSC

Over 6000 examinations

Developed over 10 years

Baseline Surveillance in Li-Fraumeni Syndrome Using Whole-Body Magnetic Resonance Imaging A Meta-analysis

Mandy L. Ballinger, PhD; Ana Best, PhD; Phuong L. Mai, MD; Payal P. Khincha, MD; Jennifer T. Loud, RN; June A. Peters, MS; Maria Isabel Achatz, MD; Rubens Chojniak, MD; Alexandre Balieiro da Costa, MD; Karina Miranda Santiago, MS; Judy Garber, MD, MPH; Allison F. O'Neill, MD; Rosalind A. Eeles, PhD; D. Gareth Evans, MD, FCRP; Eveline Bleiker, PhD; Gabe S. Sonke, MD; Marielle Ruijs, MD; Claudette Loo, MD; Joshua Schiffman, MD; Anne Naumer, MS; Wendy Kohlmann, MS; Louise C. Strong, MD; Jasmina Bojadzieva, MS; David Malkin, MD; Surya P. Rednam, MD; Elena M. Stoffel, MD, MPH; Erika Koeppe, MPH; Jeffrey N. Weitzel, MD; Thomas P. Slavin, MD; Bita Nehoray, MS; Mark Robson, MD; Michael Walsh, MD; Lorenzo Manelli, MD; Anita Villani, MD; David M. Thomas, FRACP; Sharon A. Savage, MD

IMPORTANCE Guidelines for clinical management in Li-Fraumeni syndrome, a multiple-organ cancer predisposition condition, are limited. Whole-body magnetic resonance imaging (WBMRI) may play a role in surveillance of this high-risk population.

OBJECTIVE To assess the clinical utility of WBMRI in germline *TP53* mutation carriers at baseline.

DATA SOURCES Clinical and research surveillance cohorts were identified through the Li-Fraumeni Exploration Research Consortium.

STUDY SELECTION Cohorts that incorporated WBMRI for individuals with germline *TP53* mutations from January 1, 2004, through October 1, 2016, were included.

DATA EXTRACTION AND SYNTHESIS Data were extracted by investigators from each cohort independently and synthesized by 2 investigators. Random-effects meta-analysis methods were used to estimate proportions.

MAIN OUTCOMES AND MEASURES The proportions of participants at baseline in whom a lesion was detected that required follow-up and in whom a new primary malignant neoplasm was detected.

RESULTS A total of 578 participants (376 female [65.1%] and 202 male [34.9%]; mean [SD] age, 33.2 [17.1] years) from 13 cohorts in 6 countries were included in the analysis. Two hundred twenty-five lesions requiring clinical follow-up were detected by WBMRI in 173 participants. Sixty-one lesions were diagnosed in 54 individuals as benign or malignant neoplasms. Overall, 42 cancers were identified in 39 individuals, with 35 new localized cancers treated with curative intent. The overall estimated detection rate for new, localized primary cancers was 7% (95% CI, 5%-9%).

CONCLUSIONS AND RELEVANCE These data suggest clinical utility of baseline WBMRI in *TP53* germline mutation carriers and may form an integral part of baseline clinical risk management in this high-risk population.

torhite#j@marjamantetry Foehtipe#jamaljdes

+ touhttp://jama.jamanetwon

- Meta-analysis August 2017
- Clinical utility of WBMRI in germline TP53 mutation carriers (baseline assessment)
- Total of 578 participants
- 13 cohorts in 6 countries
- 42 cancers were identified in 39
 individuals
- 35 new localized cancers treated with curative intent
- Overall estimated detection rate for new localized cancers is 7%

Familial Cancer (2017) 16:433–440 DOI 10.1007/s10689-017-9965-1

ORIGINAL ARTICLE

Baseline results from the UK SIGNIFY study: a whole-body MRI screening study in *TP53* mutation carriers and matched controls

Sibel Saya¹ · Emma Killick^{1,2} · Sarah Thomas³ · Natalie Taylor³ · Elizabeth K. Bancroft³ · Jeanette Rothwell⁴ · Sarah Benaft⁴ · Alexander Dias¹ · Christos Mikropoulos^{1,5} · Jenny Pope¹ · Anthony Chamberlain¹ · Ranga Gunapala³ · The SIGNIFY Study Steering Committee · Louise Izatt⁶ · Lucy Side⁷ · Lisa Walker⁸ · Susan Tomkins⁹ · Jackie Cook¹⁰ · Julian Barwell¹¹ · Vicki Wiles¹² · Lauren Limb¹³ · Diana Eccles² · Martin O. Leach^{1,3} · Susan Shanley^{3,14} · Fiona J. Gilbert¹² · Helen Hanson¹⁵ · David Gallagher¹⁶ · Bala Rajashanker⁴ · Richard W. Whitehouse⁴ · Dow-Mu Koh^{1,3} · S. Aslam Sohaib³ · D. Gareth Evans⁴ · Rosalind A. Eeles^{1,3} Published online: 16 January 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In the United Kingdom, current screening guidelines for *TP53* germline mutation carriers solely recommends annual breast MRI, despite the wide spectrum of malignancies typically seen in this group. This study sought to investigate the role of one-off non-contrast wholebody MRI (WB MRI) in the screening of asymptomatic *TP53* mutation carriers. 44 *TP53* mutation carriers and 44 population controls were recruited. Scans were read by radiologists blinded to participant carrier status. The incidence of malignancies diagnosed in *TP53* mutation carriers against general population controls was calculated. The

incidences of non-malignant relevant disease and irrelevant disease were measured, as well as the number of investigations required to determine relevance of findings. In TP53 mutation carriers, 6 of 44 (13.6, 95% CI 5.2-27.4%) participants were diagnosed with cancer during the study, all of which would be considered life threatening if untreated. Two were found to have two primary cancers. Two participants with cancer had abnormalities on the MRI which were initially thought to be benign (a pericardial cyst and a uterine fibroid) but transpired to be sarcomas. No controls were diagnosed with cancer. Fifteen carriers (34.1, 95% CI 20.5-49.9%) and seven controls (15.9, 95% CI 6.7-30.1%) underwent further investigations following the WB MRI for abnormalities that transpired to be benign (p=0.049). The cancer detection rate in this group justifies a minimum baseline non-contrast WB MRI in germline TP53 mutation carriers. This should be adopted into national guidelines for management of adult TP53 mutation carriers in addition

Sibel Saya and Emma Killick-Joint first authorship.

Richard W. Whitehouse, Dow-Mu Koh, S. Aslam Sohaib, D. Gareth Evans and Rosalind A. Eeles—Joint last authorship.

Electronic supplementary material The online version of this article (doi:10.1007/s10509.0107/8105-1) contains supplementary material, which is available to authorized users.

Rosalind A. Eeles rosalind.eeles@icr.ac.uk

- ¹ The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, London, UK
- ² University Hospital Southampton NHS Foundation Trust, Southampton, UK
- ³ Royal Marsden NHS Foundation Trust, London, UK
- ⁴ Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- ⁵ Cancer Unit, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
- ⁶ Guys and St Thomas' NHS Foundation Trust, London, UK
- ⁷ Great Ormond Street Hospital & UCL Institute for Women's Health, London, UK

⁸ Oxford University Hospitals, Oxford, UK
 ⁹ University Hospitals Bristol NHS Foundation Trust, Bristol,

- ¹⁰ Sheffield Children's NHS Foundation Trust, Sheffield, UK
- ¹¹ University of Leicester, Leicester, UK

UK

- ¹² University of Cambridge, Cambridge, UK
- ¹³ Northwick Park Hospital, London, UK
- ¹⁴ Peter MacCallum Cancer Centre, Melbourne, Australia
- ¹⁵ St Georges Hospital, London, UK
- ¹⁶ Mater Hospital, Dublin, Ireland

- UK SIGNIFY study 2017
- 44 *TP53* mutation carriers and 44 population controls were recruited.
- In TP53 mutation carriers, 6 of 44 (13.6, 95% CI 5.2–27.4%) participants were diagnosed with cancer during the study, all of which would be considered life threatening if untreated.
- No controls were diagnosed with cancer.
- The cancer detection rate in this group justifies a minimum baseline noncontrast WB MRI in germline *TP53* mutation carriers. This should be adopted into national guidelines for management of adult *TP*53 mutation carriers to the current practice of contrast enhanced breast MRI imaging.

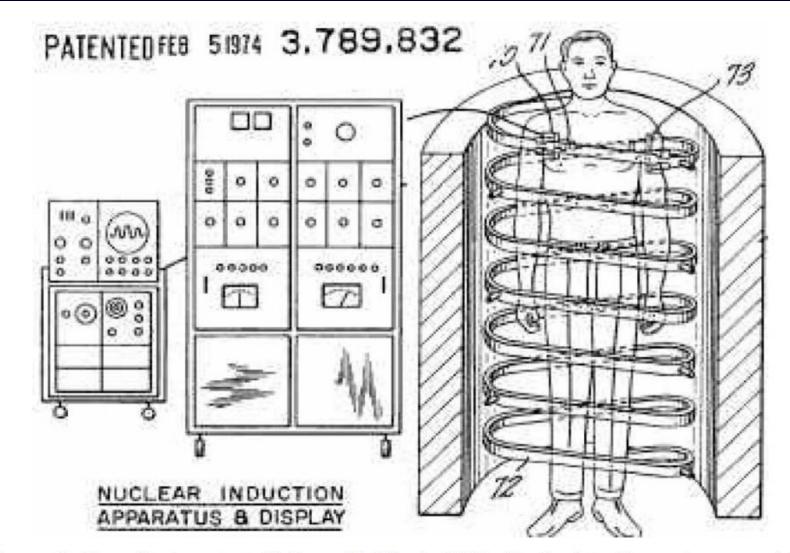
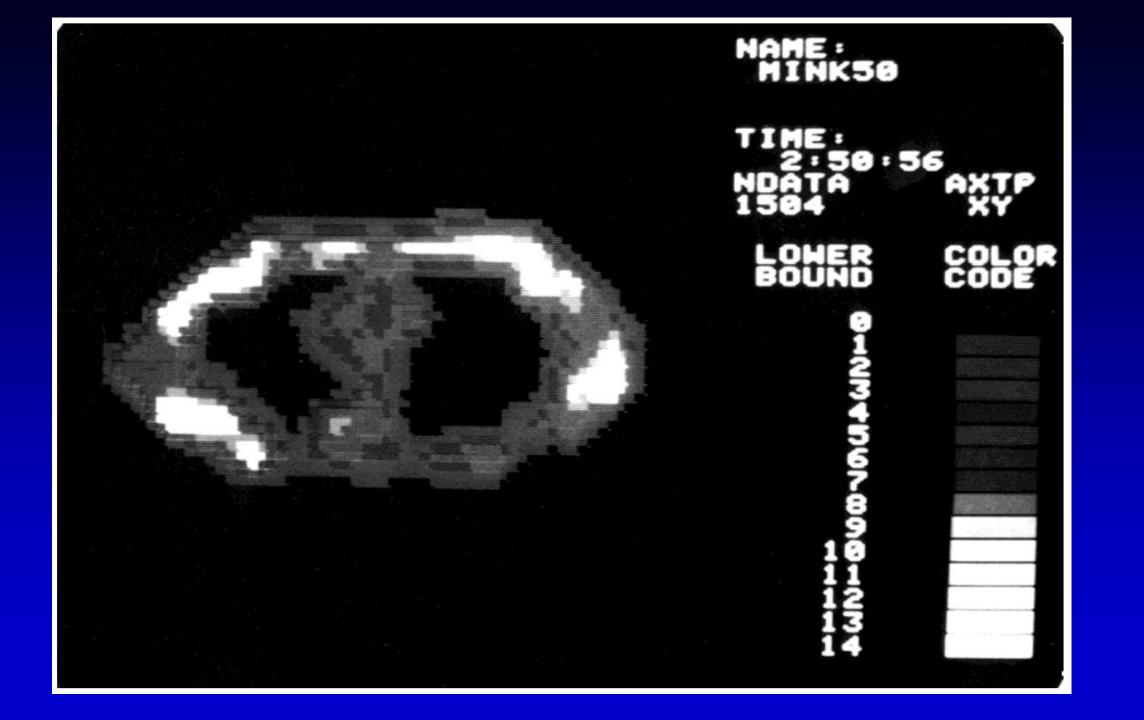
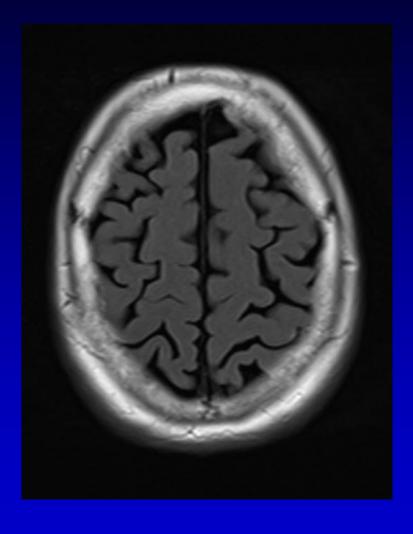
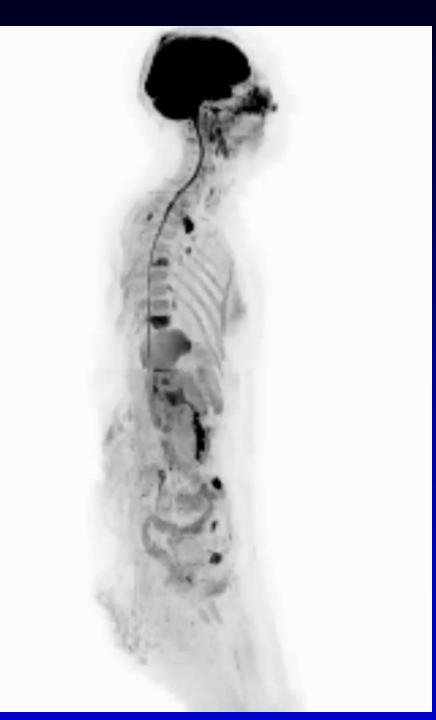



Figure 2. Damadian's patent filed on 17 March 1972. Credit: http://www.fonar.com/pdf/ doc_7.pdf

"Optimal" set-up

coils as far as required


"Comfort" set-up



Anterior coils to thighs

Typical WBMR sequences

Region	Sequence(s)	Plane	Approx. TA	Reason for inclusion
Whole spine	STIR T1	Sagittal	5 min 2 min	Detection of metastases Assessment of activity of metastases Check for impending or actual cord compression
Head	FLAIR	Axial	1 min	Screening for brain metastases Breast cancer: assessment of mandible
Whole body	T1 DIXON GRE	Axial	3 min	Lesion characterisation Fat fraction calculation
Whole body	DWI	Axial (x4 stations)	25 min	Lesion detection and monitoring Tumour volume measurement (ml)
Lungs	UTE spiral VIBE	Coronal	20 sec BH	Thorax lesion detection
Whole body	T1 DIXON GRE	Coronal	20 sec x3 BH	Lesion characterisation
Whole body	T2 HASTE	Axial	3 min	Lesion characterisation Localisation for DWI
Spine (as required)	T1 and T2	Axial	2 min per	Assessment of any cord compressing lesions
		Approx. total TA:	45 min	

Slide adapted with thanks from presentations authored by Prof. Anwai R. Padhani

RESPECT study tolerance questionnaire

			e k 12: rate 27/40		k 36: rate 10/18
Question topic	Criterion	СТ	WB-MRI	СТ	WB-MRI
Level of concern	Moderate or Intense	23%	26%	20%	30%
Comfort	Barely acceptable	0%	11%	0%	20%
Helplessness	Moderate or Severe	8%	33%	20%	30%
Pain score	0-10	0.88	1.56	1.50	1.80
Willingness to repeat	Yes	100%	100%	100%	100%
Satisfaction	Good or Very Good	100%	100%	100%	100%
Preference	CT / Neither / WB-MRI	67% / 1	1% / 22%	80% / 0	% / 20%
	Survey method adapted fi	rom Schonenl	berger E, et al.	PLoS One 200	7; 2(2): e246.

CCR PEDIATRIC ONCOLOGY SERIES

Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome

Christian P. Kratz¹, Maria Isabel Achatz², Laurence Brugières³, Thierry Frebourg⁴, Judy E. Garber⁵, Mary-Louise C. Greer⁶, Jordan R. Hansford^{7,8}, Katherine A. Janeway⁹, Wendy K. Kohlmann¹⁰, Rose McGee¹¹, Charles G. Mullighan¹², Kenan Onel¹³, Kristian W. Pajtler^{14,15}, Stefan M. Pfister^{14,15}, Sharon A. Savage², Joshua D. Schiffman¹⁶, Katherine A. Schneider⁵, Louise C. Strong¹⁷, D. Gareth R. Evans¹⁸, Jonathan D. Wasserman¹⁹, Anita Villani²⁰, and David Malkin²⁰

Abstract

Li-Fraumeni syndrome (LFS) is an autosomal dominantly inher- panel concludes that there are sufficient existing data to rec-LFS and propose consensus surveillance recommendations. Here- Clin Cancer Res; 23(11); e38-e45. ©2017 AACR. in, we briefly summarize clinical and genetic aspects of this aggressive cancer predisposition syndrome. In addition, the expert Grations.

¹Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany. ²Clinical Genetics Branch, National Cancer Institute, Bethesda, Maryland, ³Child and Adolescent Cancer Department, Gustave Roussy Cancer Campus, Villejuif, France. ⁴Department of Genetics, Rouen University Hospital, Rouen, France, ⁵Center for Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts. ⁶Department of Diagnostic Imaging, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada, ⁷Children's Cancer Centre, Royal Children's Hospital, University of Melbourne, Melbourne, Australia. ⁸Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia. 9Harvard Medical School, Pediatric Solid Tumor Center, Dana-Farber Cancer Institute, Boston Children's Hospital Cancer Center, Boston, Massachusetts. ¹⁰Huntsman Cancer Institute, Salt Lake City, Utah. 11Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, ¹²Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee. ¹³Hofstra Northwell School of Medicine. Cohen Children's Medical Center, Northwell Health, Manhasset, New York. ¹⁴Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany, 15Division of Pediatric Neuro-Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁶Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, ¹⁷Department of Genetics. The University of Texas MD Anderson Cancer Center, Houston, Texas, ¹⁸Medical Genetics and Cancer Epidemiology, Genomic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom. ¹⁹Division of Endocrinology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada, ²⁰Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.

Corresponding Authors: David Malkin and Anita Villani, Division of Hematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. Phone: 416-813-5348; Fax: 416-813-5327; E-mail: david.malkin@sickkids.ca; anita.villani@sickkids.ca

doi: 10.1158/1078-0432.CCR-17-0408

©2017 American Association for Cancer Research.

e38 Clin Cancer Res; 23(11) June 1, 2017

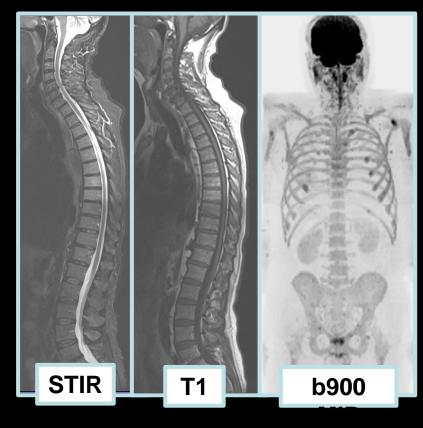
ited condition caused by germline mutations of the TP53 tumor ommend that all patients with LFS be offered cancer surveilsuppressor gene encoding p53, a transcription factor triggered as a lance as soon as the clinical or molecular LFS diagnosis is protective cellular mechanism against different stressors. Loss of established. Specifically, the panel recommends adoption of p53 function renders affected individuals highly susceptible to a a modified version of the "Toronto protocol" that includes a broad range of solid and hematologic cancers. It has recently combination of physical exams, blood tests, and imaging. The become evident that children and adults with LFS benefit from panel also recommends that further research be promoted to intensive surveillance aimed at early tumor detection. In October explore the feasibility and effectiveness of these risk-adapted 2016, the American Association for Cancer Research held a meeting surveillance and cancer prevention strategies while addressing of international LFS experts to evaluate the current knowledge on the psychosocial needs of individuals and families with LFS.

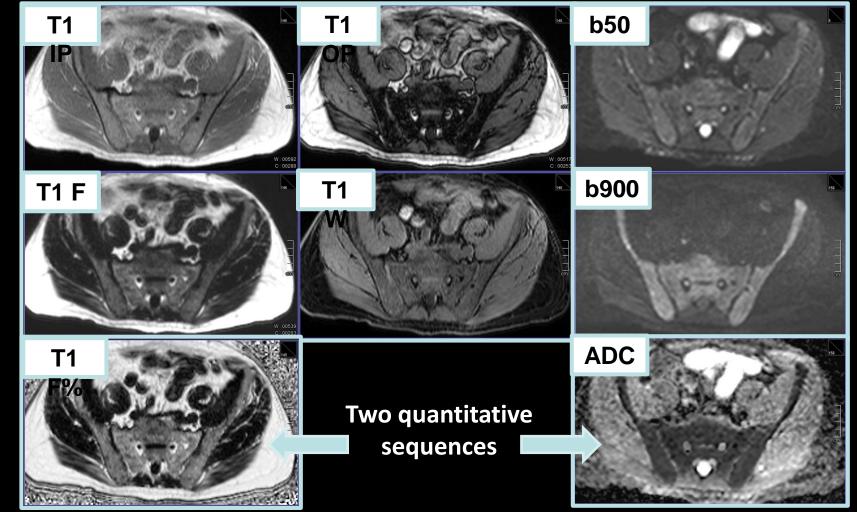
See all articles in the online-only 66hth //dindenteires.haorolmgy

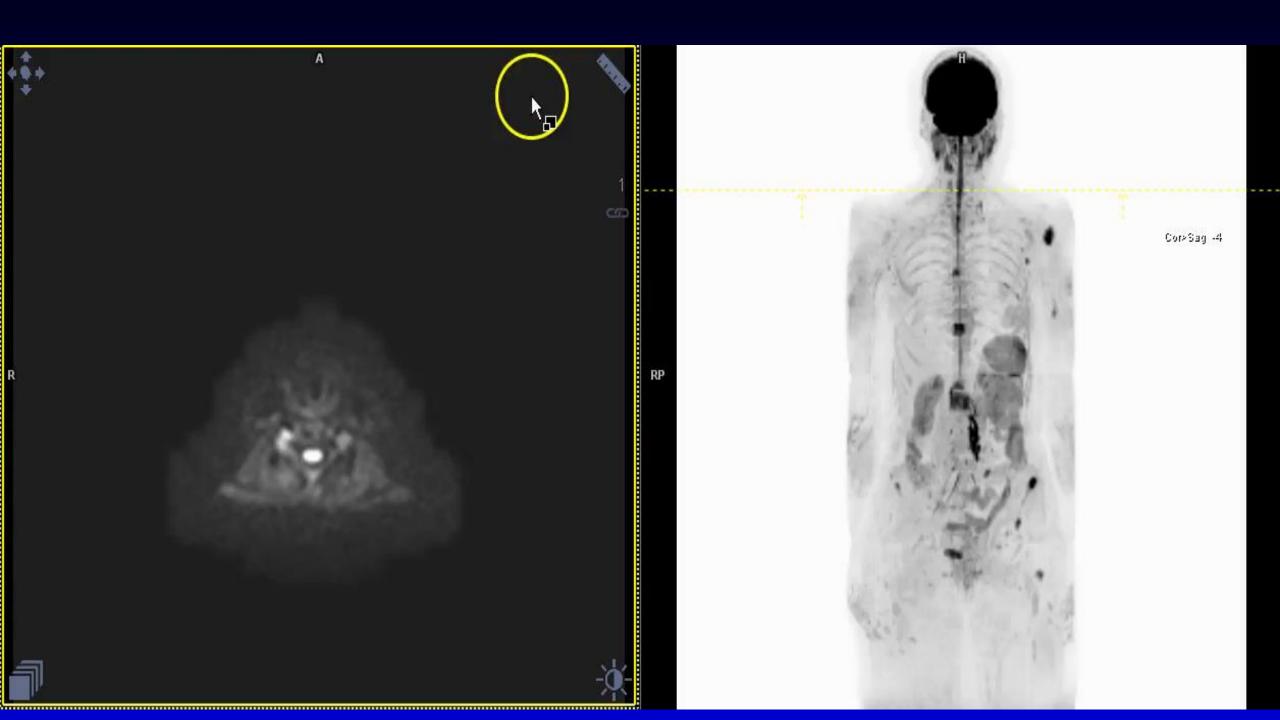
Introduction

Li-Fraumeni syndrome (LFS; OMIM #151623) is among the most aggressive cancer predisposition syndromes characterized by a high and early-onset cancer risk. The tumor spectrum is wide and includes brain tumors [choroid plexus carcinoma, Sonic Hedgehog (SHH) subtype medulloblastoma, gliomal, adrenocortical carcinoma (ACC), a range of soft tissue sarcomas (STS) and bone tumors, hematologic malignancies, breast cancer (generally very early in onset), and other cancer types, including lung, skin, gastrointestinal tract, kidney, thyroid, as well as neuroblastoma. The tumors most closely associated with LFS are called "core" cancers and include STS, osteosarcoma, premenopausal breast cancer, brain tumors, and ACCs (for review, see refs. 1, 2). LFS was first described in 1969 by Frederick Li and Joseph Fraumeni Jr based on their observation of a unique spectrum of cancers in four families in whom the index cases presented with rhabdomyosarcoma (3). The original definition of the syndrome was established in 1988 as the result of an analysis of 24 kindreds presenting with an autosomal dominant pattern of transmission of early-onset neoplasms including STS, breast cancers, central nervous system (CNS) tumors, leukemias, and ACCs before the age of 45 years (4). This "classical" definition requires one individual with a sarcoma diagnosed under the age of 45 who has at least one firstdegree relative (parent, sibling, or child) with a cancer of any kind diagnosed under the age of 45 and a third family member who is either a first- or second-degree relative in the same parental lineage (grandparent, aunt, uncle, niece, nephew, or grandchild) with any

cancer diagnosed under the age of 45, or a sarcoma at any age (4).

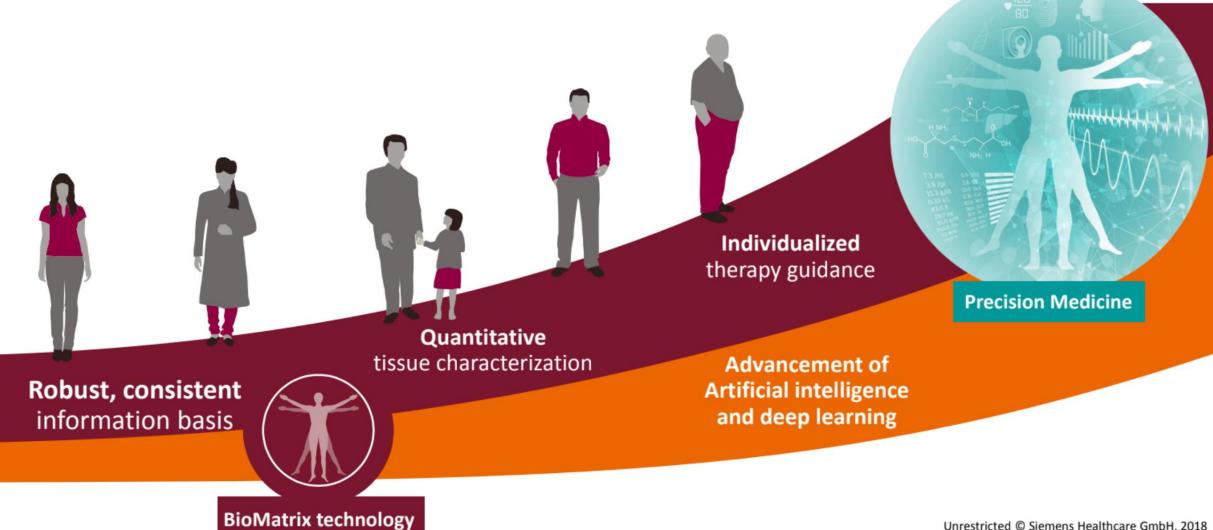

- American Association for Cancer Research meeting of LFS experts. Published June 2017.
- It has recently become evident that children and adults with LFS benefit from intensive surveillance aimed at early tumor detection.
- The panel concludes that there are sufficient existing data to recommend that all patients with LFS be offered cancer surveillance as soon as the clinical or molecular LFS diagnosis is established.
- Specifically, the panel recommends adoption of a modified version of the "Toronto protocol" that includes a combination of physical exams, blood tests, and imaging.


Table 1. Published surveillance protocols for individuals with LFS

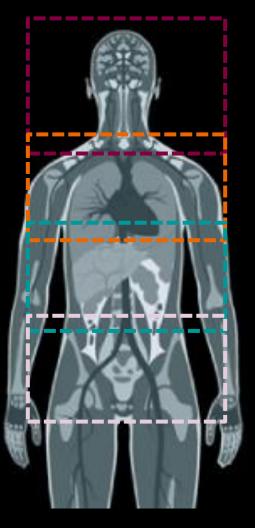

Tumor type	Australia (52, 53)	NCCN (54)	Toronto (55, 56)
ACC	AUS q 3-4 m: birth-10 y	No screening described	 AUS q 3-4 m: birth-40 y Biochemistry (17-OH-progesterone, total testosterone, DHEAS, androstenedione) q 3-4 m: birth-40 y 24-h urine cortisol, if feasible
Breast cancer	 BSE: from 18 y CBE q 6-12 m: from 20-25 y Breast MRI annually: 20/25-50 y (Consider annual mammography ± US if not possible) Discuss risk-reducing bilateral mastectomy 	 Breast awareness: from 18 y CBE q 6-12 m: from 20-25 y 20-29 y: breast MRI with contrast annually (or mammogram if unavailable) 30-75 y: breast MRI with contrast and mammogram annually 75 y: individual recommendations Continue screening breast cancer survivors with mammogram and breast MRI Discuss risk-reducing mastectomy 	 BSE monthly: from 18 y CBE q 6 m: from 20-25 y or 5-10 y before earliest case of breast cancer in family Annual mammography and breast MRI: from age 20-75 y or 5-10 y before earliest case of breast cancer in family Breast MRI alternates with WBMRI Breast US with mammography as indicated by breast density Consider risk-reducing bilateral mastectomy
Proin tumor	Brain MRI included in annual WBMRI:		Annual brain MRI: from birth
Brain tumor	 Brain Michael in annual WBMRI. potentially from childhood Annual neurologic exam Prompt reporting of new neurologic symptoms 	 The brain may be examined as part of WBMRI or as a separate exam 	• Annual brain MRI. from birth
Sarcoma	 Annual WBMRI Annual comprehensive physical exam Awareness of new symptoms 	Annual WBMRI (or equivalent)	 Annual rapid WBMRI: from birth AUS q 3-4 m: from 18 y
Hematopoietic	Annual CBC: from 18 y	 No screening described 	CBC, ESR, LDH q3-4m: from birth
CRC	 Colonoscopy q 2–5 y: from age 25 or 10 y before earliest onset of CRC in family 	 Consider colonoscopy q 2–5 y: from age 25 or 5 y before earliest known colon cancer in family 	 Colonoscopy q 2 y: from age 25 or 10 y before earliest onset of CRC in family
Gastric cancer	 Endoscopy q 2–5 y: from age 25 or 10 y before earliest onset gastric cancer in family 		No screening described
Skin cancer	No screening described	 Annual dermatologic exam 	Annual dermatologic exam: from 18 y
Other		 Annual comprehensive physical exam, including neurologic exam Education regarding signs and symptoms of cancer. Apprise pediatricians of childhood cancer risk Additional surveillance based on family history of cancer Therapeutic RT should be avoided when possible 	 Complete physical exam q 3-4 m, including comprehensive neurologic exam and anthropometric measurements in children Prompt assessment with primary care physician for any medical concerns

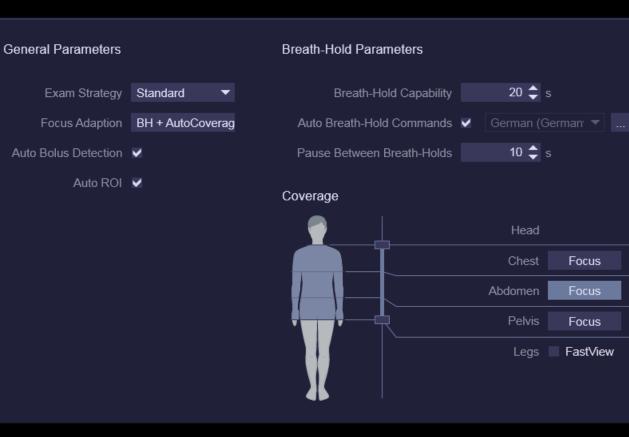
Abbreviations: AUS, abdominal US (abdomen and pelvis); BSE, breast self-examination; CBC, complete blood count; CBE, clinical breast examination; CRC, colorectal carcinoma; DHEAS, dehydroepiandrosterone; ESR, erythrocyte sedimentation rate; h, hour; LDH, lactate dehydrogenase; m, months; q, every; RT, radiation therapy; y, years.

Whole-body MRI Images



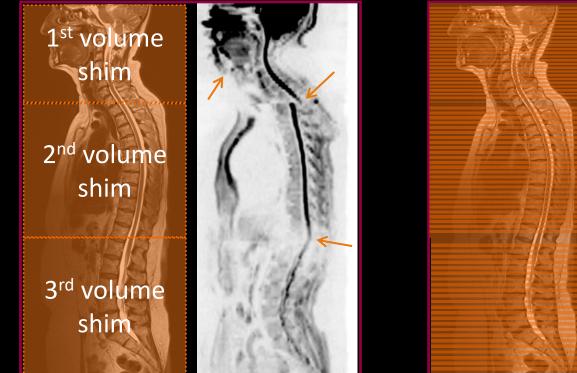
Delivering WB-MRI for precision medicine by minimising variations




Unrestricted © Siemens Healthcare GmbH, 2018

Whole-Body Dot Engine - Highest consistency for follow-up examinations and response assessment

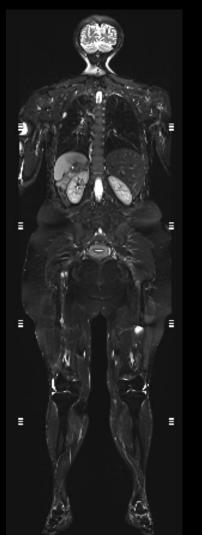
Easy, push-button workflow with Whole-Body Dot Engine

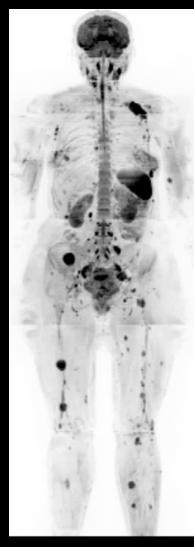

"True" whole-body coverage in 4-5 stations (MET-RADS compliant protocol)

5 x 3:13 min DWI b50_800 5 x 0:42 min T2 HASTE STIR 7 x 0:12 min T1 VIBE Dixon 3 x 1:24 min T1w Spine 3 x 1:41 min T2w Spine

Σ 29:30 min

iSHIM-SliceAdjust enables distortion free Whole-Body DWI




3D Shim = global, static compromise

SliceAdjust = local, dynamic optimum Excellent correlation of DWI information with anatomical scans due to the absence of "broken spine" artifact

Whole Body MRI in patient with multiple myeloma Excellent homogeneity and fast execution

b800 DWI, MIP

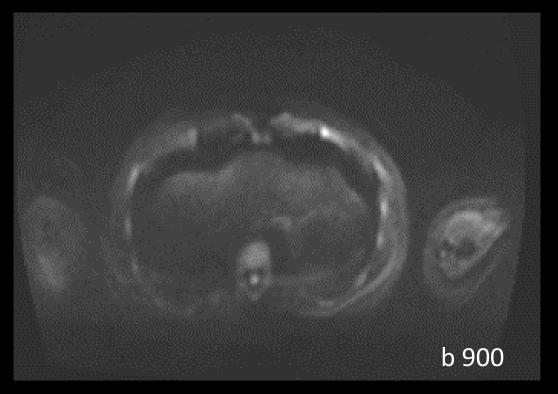
STIR TSE

"True" whole-body coverage in 5 stations (MET-RADS compliant)

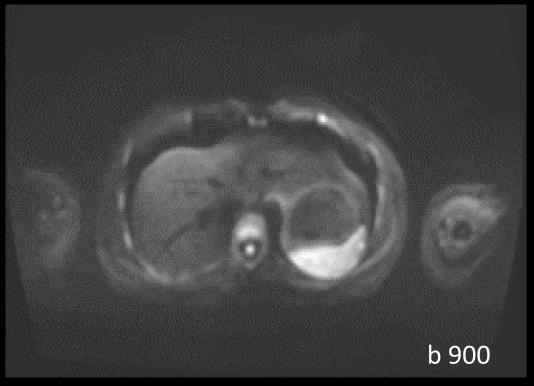
5 x 3:13 min DWI b50_800 5 x 0:42 min T2 HASTE STIR 7 x 0:12 min T1 VIBE Dixon 3 x 1:24 min T1w Spine 3 x 1:41 min T2w Spine

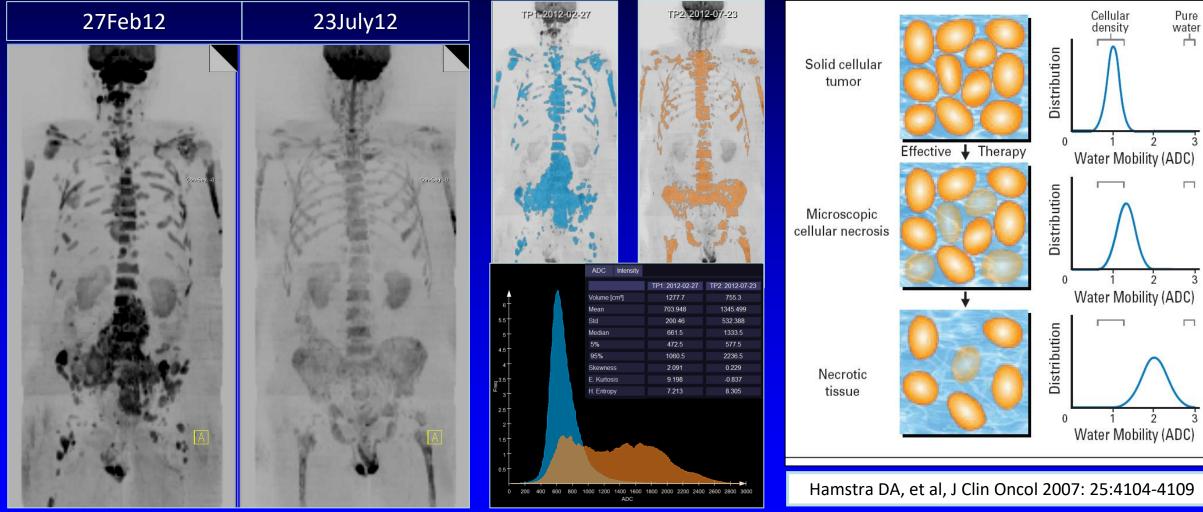
Σ 29:30 min

University Hospital Tübingen, Germany

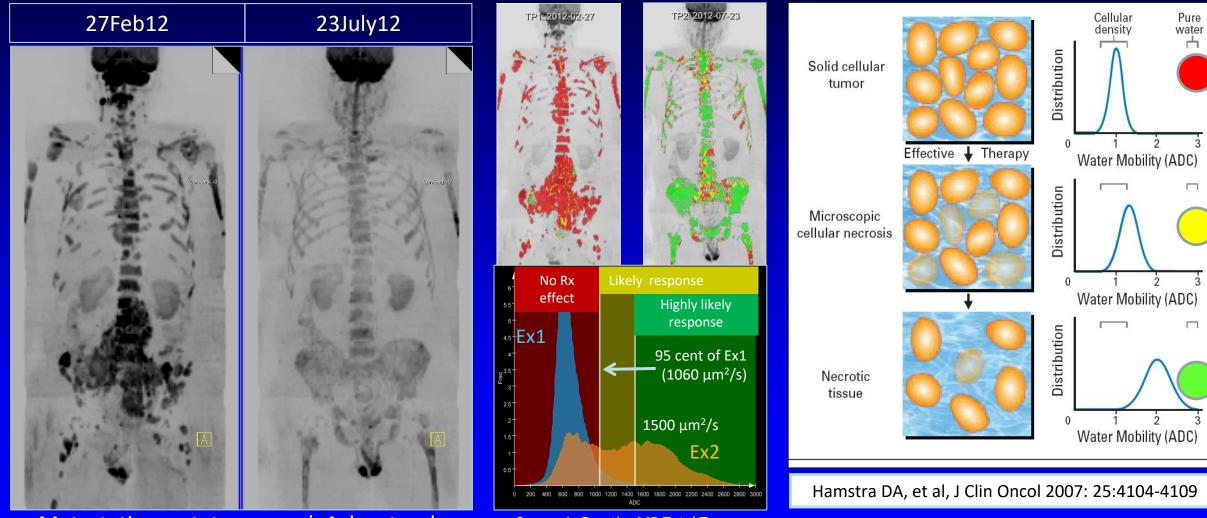

T2 HASTE STIR

Magnetic Resonance Unrestricted © Siemens Healthcare GmbH, 2017


SliceAdjust WholeBody mode

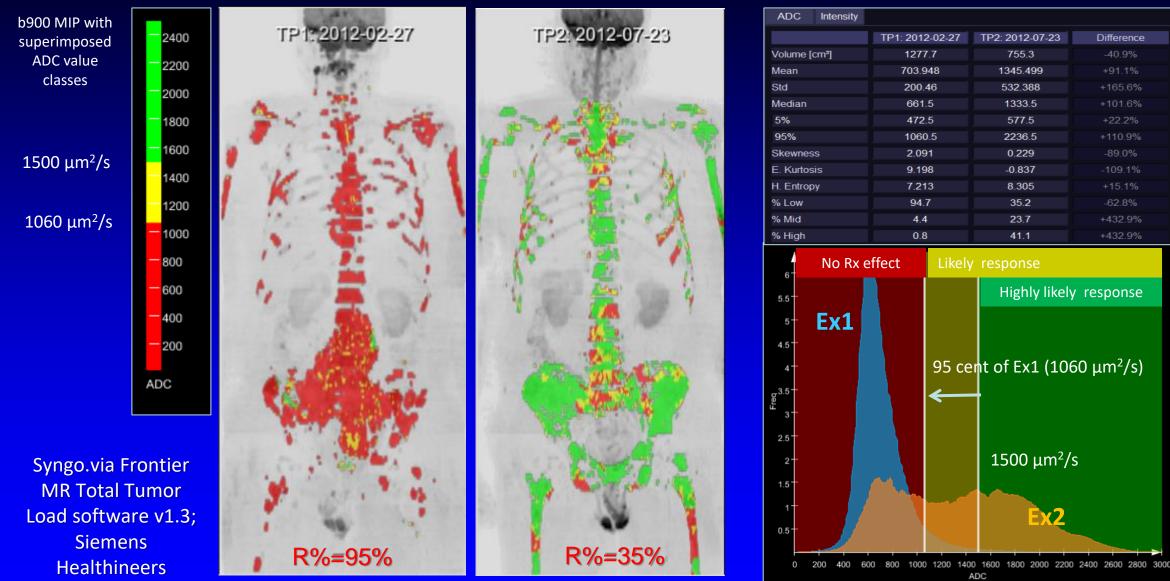

Without SliceAdjust

With SliceAdjust

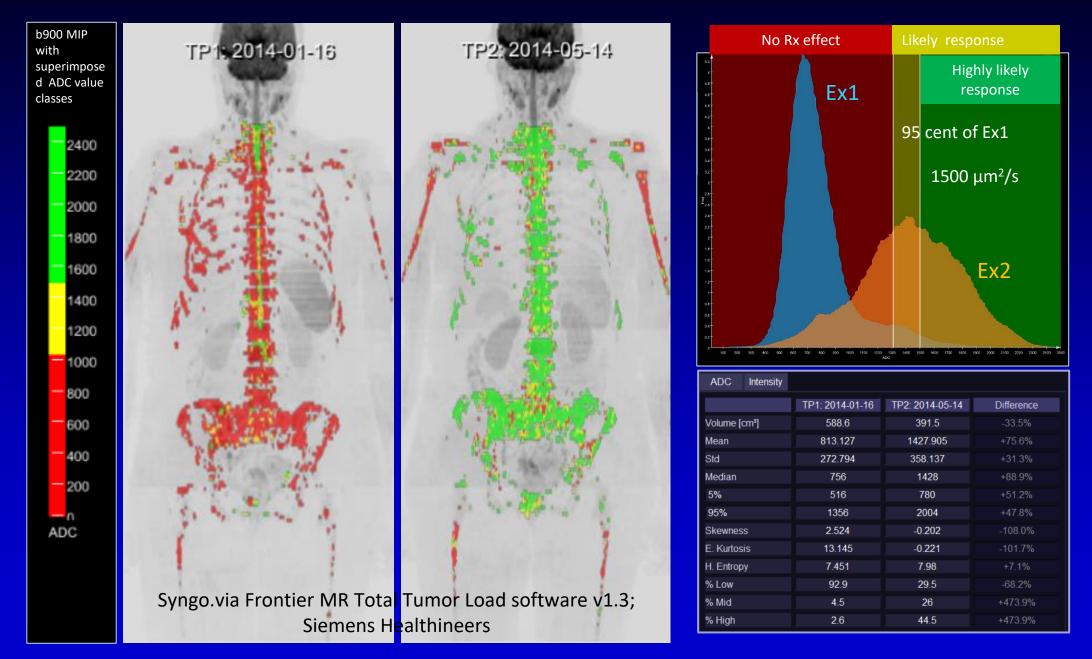

Quantitative ADC values are related to cell viability

Metastatic prostate cancer (x4 docetaxel, goserelin & prednisone)

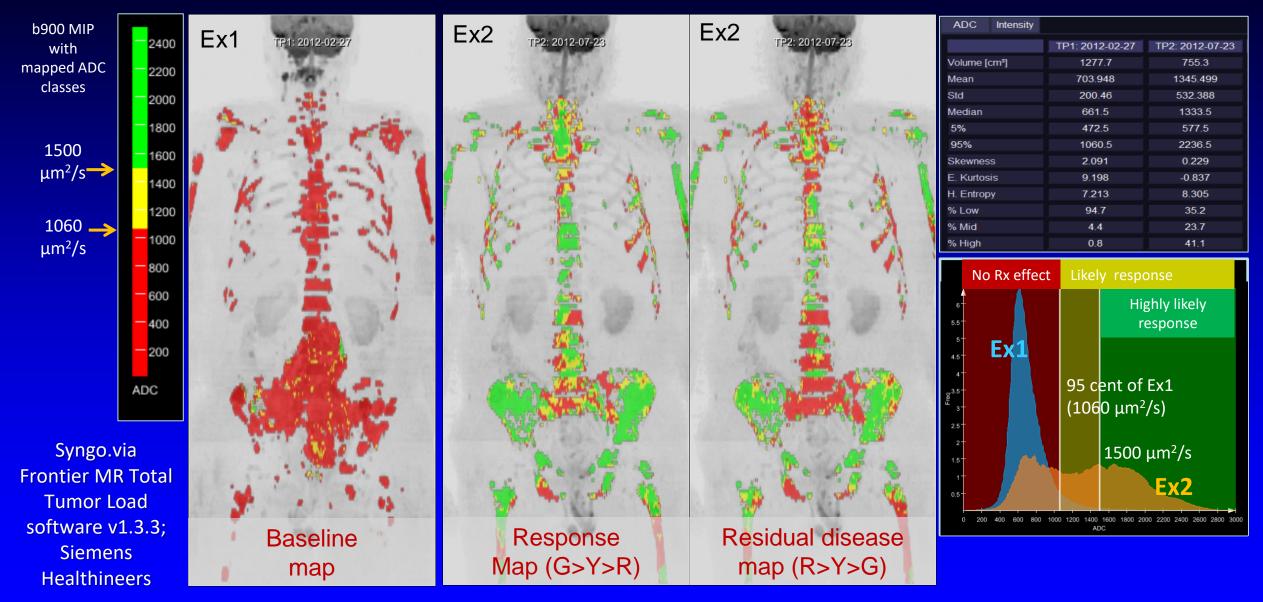
Syngo.via Frontier MR Total Tumor Load software v1.3; Siemens Healthineers


Cellular viability habitats can be spatially mapped

Metastatic prostate cancer (x4 docetaxel, goserelin & prednisone)

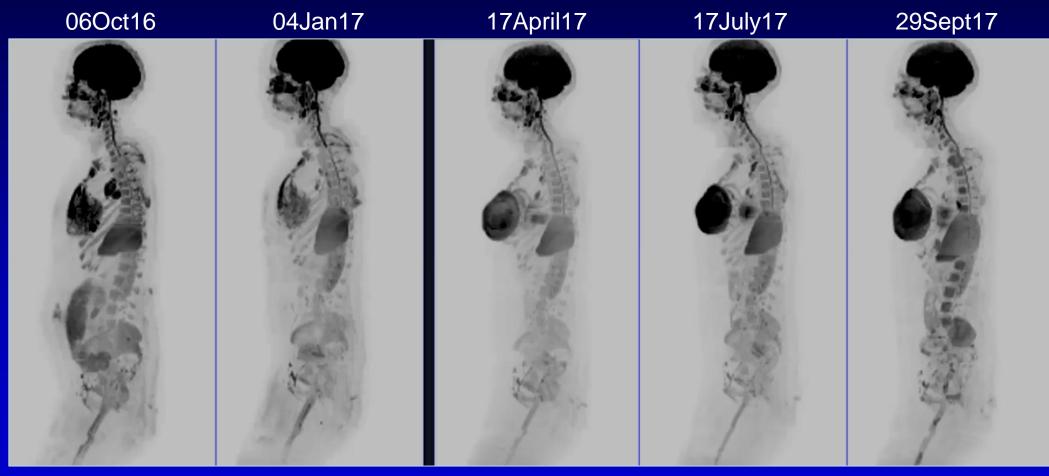

Syngo.via Frontier MR Total Tumor Load software v1.3; Siemens Healthineers

Viability habitats: mapped & quantified (ADC distribution/spatial heterogeneity)



Metastatic prostate cancer (x4 docetaxel, goserelin & prednisone)

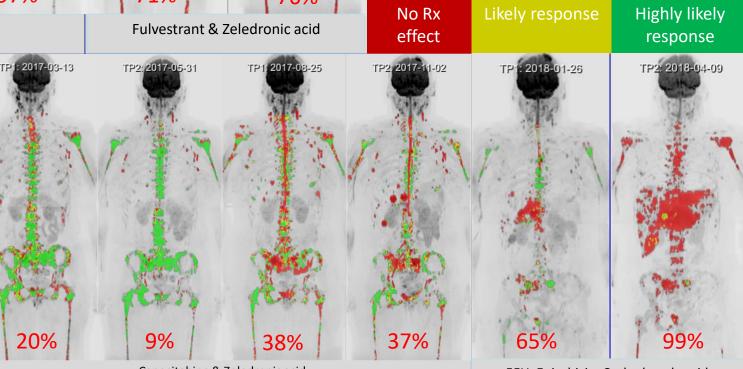
51 yo female with metastatic breast cancer. Rx Erubulin chemotherapy x 6 cycles. Progression on morphology & but response on DWI/ADC maps


Viability habitats mapping for biopsy guidance

Metastatic prostate cancer (x4 docetaxel, ADT, prednisone)

Triple Negative MBC in Pregnancy: staging & follow-up

34F with triple negative breast cancer (G3, T4, N1) diagnosed in pregnancy (26/40) – presentation & follow-up


Baseline

Post chemo Birth Surgery & reconstructions

Axillary & bone relapse Liver & bone relapse on chemo

Precision oncology application of quantitative WB-**MRI** in metastatic breast cancer

5FU, Epirubicin, Cyclophosphamide

Acknowledgements:

Prof. Anwar Padhani and Will McGuire for allowing the use of their slides