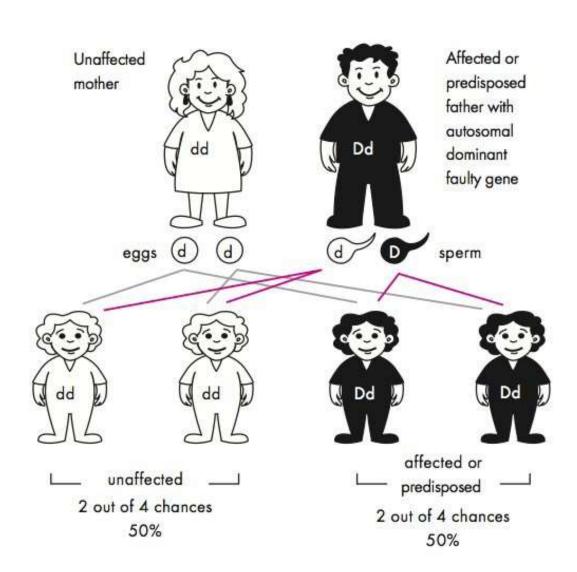


The Annabel Evans
Memorial Fund

National Institute for Health Research

The SIGNIFY Study

Magnetic ReSonance ImaGing screeNing In Li Fraumeni SYndrome: An exploratory whole body MRI study


Professor Ros Eeles

Li Fraumeni Syndrome

- Majority of families who meet the criteria for Li Fraumeni Syndrome harbour a mutation in the gene *TP53* (aka p53)
- Mutations are inherited in an autosomal dominant fashion.
- Mutation carriers are predisposed to a range of cancers:
 - Including sarcoma, breast cancer, brain tumours, adrenocortical carcinoma, leukaemia
- Typically age of cancers can be 20 30 years younger than the general population
- Carriers can get more than one cancer each
- Estimates of the chance of carriers getting ≥1 cancer vary
 - This chance could be up to 93% in women and 68% in men by age 50
 - The actual risk likely varies depending on family history and specific mutation

Autosomal Dominant Inheritance

- A person can carry only one copy with a mutation, other copy is normal
- 50% chance of passing on mutated copy to children
- Inheritance is not linked to gender – but implications of being a carrier are different

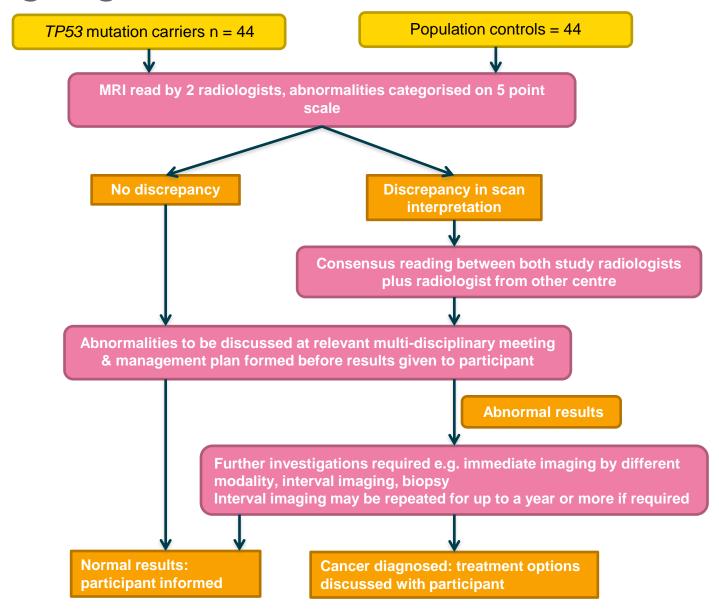
Management of LFS (Pan-Thames Guidelines)

- Open door policy
- Female breast cancer risk:
 - Practice breast awareness and self-examination
 - Annual breast MRI age 20 50
 - Annual mammography from age 40 in some centres and some countries (not all)
 - Discussion regarding risk-reducing mastectomy
- No other targeted screening is recommended as there is no proven benefit
- Cancer treatment should be optimal: radiotherapy only avoided where another type of treatment is of at least equal benefit
- Predictive genetic testing after appropriate counselling can be done at any age

Whole body MRI screening in LFS

- A Brazilian study screened 57 carriers with two cancers found (1 kidney cancer and 1 breast DCIS) (Paixao et al. 2015)
 - Most of these patients carry a Brazilian 'founder' mutation which has a slightly lower rate of cancer
- A paediatric WB-MRI study scanned 24 children on average twice each (Anupindi et al. 2015)
 - 9 suspicious lesions were found and one was confirmed to be cancer (thyroid)
- Toronto study employed a very thorough screening program which showed better outcomes in those who had the screening (Villani et al, 2011)
- Currently there are several screening studies at different centres (USA, UK, Australia, Netherlands) looking at whether whole-body MRI is an effective method of screening
- Results from these studies will be collated to ensure the most useful information results

Whole body MRI screening in LFS


- Advantages:
 - Can detect malignant lesions
 - Most incidental lesions can be evaluated on the WBMRI
 - Wide availability
 - No need for special software
 - No need for IV contrast
 - Lack of radiation

- Disadvantages:
 - Many incidental lesions
 - Extra investigations needed to assess uncertain lesions
 - May include invasive or radiation modalities
 - Inter-scanner variability
 - Lack of optimised protocol
 - Long acquisition time
 - Patient tolerability

The SIGNIFY Study

- Aims to assess:
 - incidence of malignancies diagnosed in asymptomatic TP53 mutation carriers using whole body MRI technique against general population controls
 - > incidence of non-malignant relevant disease
 - incidence of irrelevant findings and the investigations required to determine relevance of MRI findings
 - the psychological impact of whole body MRI screening in TP53 mutation carriers
- 44 full-body MRI scans for TP53 mutation carriers
- 44 matched population controls

Imaging Algorithm

Conclusions

- Study is not yet complete
- Psychosocial impact on carriers is also not yet complete
- Final publication expected in early 2018
- International effort underway to find the best way to find cancers early in this group of people

The ROYAL MARSDEN NHS Foundation Trust

Many thanks to all the participants for volunteering their time

The Annabel Evans Memorial Fund

Steering Committee

- Prof Ros Eeles
- Dr Emma Killick
- Dr Elizabeth Bancroft
- Dr Do-Mu Koh
- Dr Aslam Sohaib
- Prof Gareth Evans
- Prof Anwar Padhani
- Prof Leslie Walker
- Dr Gillian Mitchell
- Prof Martin Leach

- Dr Gek Kwan-Lim
- Prof Fiona Gilbert
- Susan Eastbrook
- Prof Diana Eccles
- Dr Peter Simmonds
- Dr Richard Whitehouse
- Dr Frank Saran
- Prof Fiona Gilbert
- Dr Helen Hanson
- Dr David Gallagher

